Modeling of yield and rating of land characteristics for corn based on artificial neural network and regression models in southern Iran

Authors

  • A. Moghimi Fars Agricultural and Natural Resources Research and Education Center, AREEO, Shiraz, Iran
  • A. Zeinadini Meymand Soil and Water Research Institute(SWRI), Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
  • F. Ebrahimi Meymand Soil and Water Research Institute(SWRI), Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
  • M. Amir pour Kerman Agricultural and Natural Resources Research And Education Center, Kerman, Iran
  • M. Bagheri Bodaghabadi Soil and Water Research Institute(SWRI), Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
  • M.N. Navidi Soil and Water Research Institute(SWRI), Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
Abstract:

This study was conducted to rate the land characteristics of corn in hot areas based on artificial neural networks and regression models. For this purpose, 63 corn fields were selected in southern Iran. In each farm, a pedon was excavated, described and sampled. A questionnaire was completed for each farm. A stepwise regression model was used to study the relationship between land characteristics and corn yield. A characteristic-function curve was used to rate the land characteristics. Finally, crop requirements were prepared by artificial neural network and regression models and verified by comparing the actual and predicted performance levels. The results of regression analysis showed that soil salinity, exchangeable sodium percentage, sand, clay, phosphorous, gypsum and potassium recorded the highest effect on yield and according to the artificial neural network, the exchangeable sodium percentage, soil salinity, soil texture and cation exchange capacity are the most important. Based on regression and artificial neural network methods, the threshold limit and break even production for soil salinity were 4, 2.5, 12, and 10 dS m-1, respectively, but for exchangeable sodium percentage the values were 18, 14, 35, and 30, respectively. The coefficient of determination (R2) between the actual and predicted yield based on the regression model was 0.88, but it was 0.945 (training data) and 0.837 (testing data) for the artificial neural network. Also, the results of the verification of the prepared crop requirements tables showed that the correlation of determination between the land index and the yield in the regression method was 0.78 but it was 0.81 for the artificial neural network, these results are acceptable in both methods.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

effect of seed priming and irrigation regimes on yield,yield components and quality of safflowers cultivars

این مطالعه در سال 1386-87 در آزمایشگاه و مزرعه پژوهشی دانشگاه صنعتی اصفهان به منظور تعیین مناسب ترین تیمار بذری و ارزیابی اثر پرایمینگ بر روی سه رقم گلرنگ تحت سه رژیم آبیاری انجام گرفت. برخی از مطالعات اثرات سودمند پرایمینگ بذر را بر روی گیاهان مختلف بررسی کرده اند اما در حال حاضر اطلاعات کمی در مورد خصوصیات مربوط به جوانه زنی، مراحل نموی، عملکرد و خصوصیات کمی و کیفی بذور تیمار شده ژنوتیپ های م...

effect of bataine and sulphate supplement on wool and milk characteristics and lambs performance in naine ewes

تعداد 20 رأس میش نژاد نائینی 6+-24 ماهه، با میانگین وزن 2/3-+40 کیلوگرم، همراه با 20 رأس بره های آنها در قالب طرح کاملا تصادفی اثر بتائین و مکمل سولفات بر خصوصیات شیر و پشم و عملکرد بره ها بررسی شد. میش ها بطور تصادفی در چهار تیمار قرار گرفتند. تیمارها عبارت بودند از: 1-گروه شاهد 2-بتائین (05/0 درصد ماده خشک) 3-سولفات (24/0 سولفور درصد ماده خشک 4-بتائین هرماه با سولفات. جیره غذائی طبق nrc با مح...

15 صفحه اول

on translation of politeness strategies in dialogues involving female characters in translations and retranslations of novels translated before and after the islamic revolution of iran and their effects on the image of women: a polysystem theory approach

abstract reception environment has considerable effects on accepting a translation. as the expectations of a target culture and its values and needs change throughout history, its criteria for accepting a translation or rejecting it will change accordingly (gentzler, 2001). the expectations of iran, as the reception environment in the present study, have changed after the islamic revolution. i...

the innovation of a statistical model to estimate dependable rainfall (dr) and develop it for determination and classification of drought and wet years of iran

آب حاصل از بارش منبع تأمین نیازهای بی شمار جانداران به ویژه انسان است و هرگونه کاهش در کم و کیف آن مستقیماً حیات موجودات زنده را تحت تأثیر منفی قرار می دهد. نوسان سال به سال بارش از ویژگی های اساسی و بسیار مهم بارش های سالانه ایران محسوب می شود که آثار زیان بار آن در تمام عرصه های اقتصادی، اجتماعی و حتی سیاسی- امنیتی به نحوی منعکس می شود. چون میزان آب ناشی از بارش یکی از مولفه های اصلی برنامه ...

15 صفحه اول

application of artificial neural network and ordinary least squares regression in modeling land use changes

owing to the vital effects of future land use changes, it is necessary to predict land use growth pattern before any decision making by the authorities and decision makers. purpose of this research is to model land use change of kohmare scorch plain of shiraz province using ordinary least squares regression (ols) for pre-processing variables and modeling using neural networks. to perform this m...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 23  issue 1

pages  85- 95

publication date 2018-06-20

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023